ECE 447: Robotics Engineering

Lecture 4: Rigid Motions and Homogeneous Transformations (Part 2)

Dr. Haitham El-Hussieny

Electronics and Communications Engineering
Faculty of Engineering (Shoubra)
Benha University

Spring 2019

Lecture Outline:

(1) Rotational Transformations.
(2) Composition of Rotations.
(3) Homogeneous Transformation.

4 Parameterization of Rotations.

Table of Contents

(1) Rotational Transformations.

(2) Composition of Rotations.
(3) Homogeneous Transformation.

4 Parameterization of Rotations.

Rotational Transformations:

- The $\{0\}$-frame is our fixed frame, the $\{1\}$-frame is fixed to a rigid body.
- What will happen with points of body (let say p) if we rotate the body, i.e. the $\{1\}$-frame?
- The coordinates of point p in the 1 -frame are constant p^{1}, but in the 0 -frame they are changed.
- The coordinates of the point p in 0 -frame is:

$$
p^{0}=R_{1}^{0} p^{1}
$$

Table of Contents

(1) Rotational Transformations.
(2) Composition of Rotations.
(3) Homogeneous Transformation.
4. Parameterization of Rotations.

Composition of Rotations:

[1] Rotation about Current Frame:

Suppose that we have 3 frames:

$$
\begin{aligned}
& \{0\}=\left(o_{0}, x_{0}, y_{0}, z_{0}\right) \\
& \{1\}=\left(o_{1}, x_{1}, y_{1}, z_{1}\right) \\
& \{2\}=\left(o_{2}, x_{2}, y_{2}, z_{2}\right)
\end{aligned}
$$

Any point p can be represented in any of the three coordinates:

$$
\begin{aligned}
p^{0} & =R_{1}^{0} p^{1} \\
p^{1} & =R_{2}^{1} p^{2} \\
p^{0} & =R_{2}^{0} p^{2}
\end{aligned}
$$

Composition of Rotations:

[1] Rotation about Current Frame:

$$
\begin{aligned}
p^{0} & =R_{1}^{0} p^{1} \\
p^{1} & =R_{2}^{1} p^{2} \\
p^{0} & =R_{2}^{0} p^{2}
\end{aligned}
$$

We can write:

$$
\begin{gathered}
p^{0}=R_{1}^{0} p^{1}=R_{1}^{0} R_{2}^{1} p^{2} \\
p^{0}=R_{1}^{0} R_{2}^{1} p^{2} \\
p^{0}=R_{2}^{0} p^{2}
\end{gathered}
$$

$$
R_{2}^{0}=R_{1}^{0} R_{2}^{1} \quad \text { Law of composite rotation }
$$

Composition of Rotations:

[1] Rotation about Current Frame:

Example: Suppose we rotate:
(1) first the frame by angle ϕ around current y-axis,
(2) then rotate by angle θ around the current z-axis. Find the combined rotation ?

Composition of Rotations:

[1] Rotation about Current Frame:

Example: Suppose we rotate:
(1) first the frame by angle ϕ around current y-axis,
(2) then rotate by angle θ around the current z-axis. Find the combined rotation ?

Composition of Rotations:

[1] Rotation about Current Frame:

Example: Suppose we rotate:
(1) first the frame by angle ϕ around current y-axis,
(2) then rotate by angle θ around the current z-axis. Find the combined rotation ?

Composition of Rotations:

[1] Rotation about Current Frame:

$$
R_{2}^{0}=R_{y, \phi} R_{z, \theta}
$$

$$
\begin{gathered}
R_{2}^{0}=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] \\
R_{2}^{0}=\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -c_{\phi} s_{\theta} & s_{\phi} \\
s_{\theta} & c_{\theta} & 0 \\
-s_{\phi} c_{\theta} & s_{\phi} c_{\theta} & c_{\phi}
\end{array}\right]
\end{gathered}
$$

Note: $s_{\phi}=\sin (\phi)$ and $c_{\theta}=\cos (\theta)$

Composition of Rotations:

[1] Rotation about Current Frame:

Important Observation: Rotations do not commute.

$$
R_{y, \phi} R_{z, \theta} \neq R_{z, \theta} R_{y, \phi}
$$

So that the order of rotations is important!

Composition of Rotations:

[1] Rotation about Current Frame:

Important Observation: Rotations do not commute.

$$
R_{y, \phi} R_{z, \theta} \neq R_{z, \theta} R_{y, \phi}
$$

So that the order of rotations is important!
Rule of composite rotation around the current (new) frame:
For successive rotations about the current reference frame we use the post-multiplication to find the total rotation matrix.

Composition of Rotations:

[2] Rotation with respect to Fixed Frame:
Example: Suppose we rotate:
(1) the first rotation is by angle ϕ around y_{0}-axis.
(2) then, a rotation by angle θ around z_{0}-axis (not z_{1}-axis). What is the total rotation ?

Composition of Rotations:

[2] Rotation with respect to Fixed Frame:
Example: Suppose we rotate:
(1) the first rotation is by angle ϕ around y_{0}-axis.
(2) then, a rotation by angle θ around z_{0}-axis (not z_{1}-axis). What is the total rotation ?

$$
R_{y_{0}, \phi}=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]
$$

Composition of Rotations:

[2] Rotation with respect to Fixed Frame:
Example: Suppose we rotate:
(1) the first rotation is by angle ϕ around y_{0}-axis.
(2) then, a rotation by angle θ around z_{0}-axis (not z_{1}-axis). What is the total rotation ?

Composition of Rotations:

[2] Rotation with respect to Fixed Frame:

$$
R_{2}^{0}=R_{z, \theta} R_{y, \phi} \quad \text { note the order! }
$$

$$
R_{2}^{0}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]
$$

Composition of Rotations:

[2] Rotation with respect to Fixed Frame:

$$
R_{2}^{0}=R_{z, \theta} R_{y, \phi} \quad \text { note the order! }
$$

$R_{2}^{0}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos (\phi) & 0 & \sin (\phi) \\ 0 & 1 & 0 \\ -\sin (\phi) & 0 & \cos (\phi)\end{array}\right]$
cols,

Rule of composite rotation around the fixed (original) frame:
For successive rotations about the fixed reference frame we use the pre-multiplication to find the total rotation matrix.

Composition of Rotations:

Around fixed frame ? Pre-multiply

Around current frame ? Post-multiply

Example:

Find the rotation R defined by the following basic rotations:
(1) A rotation of θ about the current axis x;
(2) A rotation of ϕ about the current axis z;
(3) A rotation of α about the fixed axis z;
(9) A rotation of β about the current axis y;
(5) A rotation of δ about the fixed axis x.

Composition of Rotations:

Around fixed frame ? Pre-multiply

Around current frame ? Post-multiply

Example:

Find the rotation R defined by the following basic rotations:
(1) A rotation of θ about the current axis x;
(2) A rotation of ϕ about the current axis z;
(3) A rotation of α about the fixed axis z;
(9) A rotation of β about the current axis y;
(5) A rotation of δ about the fixed axis x.

Solution:

$$
R=R_{x, \delta} R_{z, \alpha} R_{x, \theta} R_{z, \phi} R_{y, \beta}
$$

$\delta=15^{\circ}, \alpha=30^{\circ}, \theta=45^{\circ}, \phi=60^{\circ}, \beta=90^{\circ}$
$R=$? (Difficult ?)

Composition of Rotations:

Around fixed frame ? Pre-multiply

Around current frame ? Post-multiply

Example:

Find the rotation R defined by the following basic rotations:
(1) A rotation of θ about the current axis x;
(2) A rotation of ϕ about the current axis z;
(3) A rotation of α about the fixed axis z;
(9) A rotation of β about the current axis y;
(5) A rotation of δ about the fixed axis x.

Solution:

$$
R=R_{x, \delta} R_{z, \alpha} R_{x, \theta} R_{z, \phi} R_{y, \beta}
$$

$\delta=15^{\circ}, \alpha=30^{\circ}, \theta=45^{\circ}, \phi=60^{\circ}, \beta=90^{\circ}$
$R=$? (Difficult ?)
ROBOTICS TOOLBOX!

Table of Contents

(1) Rotational Transformations.

(2) Composition of Rotations.
(3) Homogeneous Transformation.
4. Parameterization of Rotations

Homogeneous Transformation:

Rigid Motions:

- A rigid motion is an ordered pair (R, d) of rotation R and translation d.

$$
p^{0}=R_{1}^{0} p^{1}+d_{1}^{0}
$$

Homogeneous Transformation:

Rigid Motions:

- A rigid motion is an ordered pair (R, d) of rotation R and translation d.

$$
p^{0}=R_{1}^{0} p^{1}+d_{1}^{0}
$$

- If there are 3 frames corresponding to 2 rigid motions:

$$
\begin{aligned}
p^{1} & =R_{2}^{1} p^{2}+d_{2}^{1} \\
p^{0} & =R_{1}^{0} p^{1}+d_{1}^{0}
\end{aligned}
$$

Then the overall motion is:

$$
p^{0}=R_{1}^{0} R_{2}^{1} p^{2}+R_{1}^{0} d_{2}^{1}+d_{1}^{0}
$$

Homogeneous Transformation:

- Homogeneous Transformation is a convenient way to write the formula in a 4×4 matrix:

$$
p^{0}=R_{1}^{0} R_{2}^{1} p^{2}+R_{1}^{0} d_{2}^{1}+d_{1}^{0}
$$

- Given a rigid motion (R, d), the 4×4-matrix T :

$$
T_{1}^{0}=\left[\begin{array}{cc}
\mathbf{R}_{1}^{0} & \mathbf{d}_{1}^{0} \\
0_{1 \times 3} & 1
\end{array}\right]
$$

Homogeneous Transformation:

- Homogeneous Transformation is a convenient way to write the formula in a 4×4 matrix:

$$
p^{0}=R_{1}^{0} R_{2}^{1} p^{2}+R_{1}^{0} d_{2}^{1}+d_{1}^{0}
$$

- Given a rigid motion (R, d), the 4×4-matrix T :

$$
\begin{gathered}
T_{1}^{0}=\left[\begin{array}{cc}
\mathbf{R}_{1}^{0} & \mathbf{d}_{1}^{0} \\
0_{1 \times 3} & 1
\end{array}\right] \\
T_{0}^{1}=\left(T_{1}^{0}\right)^{-1}=\left[\begin{array}{cc}
\left(\mathbf{R}_{1}^{0}\right)^{T} & -\left(\mathbf{R}_{1}^{0}\right)^{T} \mathbf{d}_{1}^{0} \\
\mathbf{0}_{3 \times 1} & 1
\end{array}\right]
\end{gathered}
$$

Homogeneous Transformation:

- To use HTs in computing coordinates of point p, we need to extend the vectors of a point by one coordinate:

$$
P^{0}=T_{1}^{0} P^{1}=\left[\begin{array}{cc}
\mathbf{R}_{3 * 3} & \mathbf{d}_{3 * 1} \\
0_{3 * 1} & 1
\end{array}\right]\left[\begin{array}{c}
p_{x}^{1} \\
p_{y}^{1} \\
p_{z}^{1} \\
\mathbf{1}
\end{array}\right]
$$

For composite homogeneous transformation, the rule for pre and post multiply is valid as rotation.

Homogeneous Transformation:

Basic Homogeneous Transformation:

$$
\begin{array}{ll}
\operatorname{Trans}_{x, a}=\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; & \operatorname{Rot}_{x, \alpha}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c_{\alpha} & -s_{\alpha} & 0 \\
0 & s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Trans}_{y, b}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{y, \beta}=\left[\begin{array}{rrrr}
c_{\beta} & 0 & s_{\beta} & 0 \\
0 & 1 & 0 & 0 \\
-s_{\beta} & 0 & c_{\beta} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Trans}_{z, c}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right] ; & \operatorname{Rot}_{z, \gamma}=\left[\begin{array}{rrrr}
c_{\gamma} & -s_{\gamma} & 0 & 0 \\
s_{\gamma} & c_{\gamma} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

Homogeneous Transformation:

(1) The teabot coordinates are expressed in camera frame, p^{c}.
(2) To express the teabot in robot frame:

$$
\eta^{r}=\prod_{c}^{r} \boldsymbol{\eta}^{C}
$$

(3) To Express it in the world frame:

$$
p^{w}=T_{c}^{w} p^{c}=T_{r}^{w} T_{c}^{r} p^{c}
$$

T_wc $=\operatorname{transl}(4,4, .5)^{*}$ trotz $\left.(180, ' \operatorname{deg})^{\prime}\right)^{*}$ roty $\left.(-30, ' \operatorname{deg})^{\prime}\right)^{*}$ transl $(0,0, .8)$;

Homogeneous Transformation:

Example

Find homogeneous transformation matrix T that represents a rotation by angle α about the current x-axis followed by a translation of b units along the current x-axis, followed by a translation of d units along the current z-axis, followed by a rotation by angle θ about the current z-axis, is given by:

$$
\operatorname{Rot}_{x, \alpha}
$$

Homogeneous Transformation:

Example

Find homogeneous transformation matrix T that represents a rotation by angle α about the current x-axis followed by a translation of b units along the current x-axis, followed by a translation of d units along the current z-axis, followed by a rotation by angle θ about the current z-axis, is given by:
$\operatorname{Rot}_{x, \alpha} \operatorname{Trans}_{x, b}$

Homogeneous Transformation:

Example

Find homogeneous transformation matrix T that represents a rotation by angle α about the current x-axis followed by a translation of b units along the current x-axis, followed by a translation of d units along the current z-axis, followed by a rotation by angle θ about the current z-axis, is given by:

$$
\operatorname{Rot}_{x, \alpha} \operatorname{Trans}_{x, b} \operatorname{Trans}_{x, d}
$$

Homogeneous Transformation:

Example

Find homogeneous transformation matrix T that represents a rotation by angle α about the current x-axis followed by a translation of b units along the current x-axis, followed by a translation of d units along the current z-axis, followed by a rotation by angle θ about the current z-axis, is given by:

$$
\begin{gathered}
T=\operatorname{Rot}_{x, \alpha} \operatorname{Trans}_{x, b} \operatorname{Trans}_{x, d} \operatorname{Rot}_{z, \theta} \\
=\left[\begin{array}{rrrr}
c_{\theta} & -s_{\theta} & 0 & b \\
c_{\alpha} s_{\theta} & c_{\alpha} c_{\theta} & -s_{\alpha} & -d s_{\alpha} \\
s_{\alpha} s_{\theta} & s_{\alpha} c_{\theta} & c_{\alpha} & d c_{\alpha} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Table of Contents

(1) Rotational Transformations.

(2) Composition of Rotations.
(3) Homogeneous Transformation.

4 Parameterization of Rotations.

Parameterization of Rotations:

Example

- A general rotation matrix R consists of nine elements $r_{i j}$.
- These nine elements are not independent quantities due to these constraints:
(1) The columns of a rotation matrix are unit vectors:

$$
\sum_{i} r_{i j}^{2}=1, \quad j \in\{1,2,3\}
$$

(2) Columns of a rotation matrix are mutually orthogonal:

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

These constraints define six independent equations with nine unknowns, so there are three free variables required to define a general rotation.

Parameterization of Rotations:

Example

- A general rotation matrix R consists of nine elements $r_{i j}$.
- These nine elements are not independent quantities due to these constraints:
(1) The columns of a rotation matrix are unit vectors:

$$
\sum_{i} r_{i j}^{2}=1, \quad j \in\{1,2,3\}
$$

(2) Columns of a rotation matrix are mutually orthogonal:

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Two ways are discussed to represent any arbitary rotations by three variable: Euler Angles and Roll-Pith-Yaw parametrization

Parameterization of Rotations: ZYZ-Euler Angles

- It is a common method of specifying a rotation matrix in terms of three independent quantities called Euler Angles $\{\phi, \theta, \psi\}$.
- Any arbitrary rotation could be represented by three successive rotations of:
(1) Rotation by ϕ about the z -axis,
(2) Followed by rotation by θ about the current y -axis.
(3) then followed by ψ about the current z-axis.

Parameterization of Rotations: ZYZ-Euler Angles

- It is a common method of specifying a rotation matrix in terms of three independent quantities called Euler Angles $\{\phi, \theta, \psi\}$.
- Any arbitrary rotation could be represented by three successive rotations of:
(1) Rotation by ϕ about the z -axis,
(2) Followed by rotation by θ about the current y -axis.
(3) then followed by ψ about the current z -axis.

$$
\begin{aligned}
R_{Z Y Z}=R_{z, \phi} R_{y, \theta} R_{z, \psi} & =\left[\begin{array}{ccc}
c_{\phi} & -S_{\phi} & 0 \\
S_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & S_{\theta} \\
0 & 1 & 0 \\
-S_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
c_{\psi} & -S_{\psi} & 0 \\
S_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-S_{\phi} S_{\psi} & -c_{\phi} c_{\theta} S_{\psi}-S_{\phi} c_{\psi} & c_{\phi} S_{\theta} \\
S_{\phi} c_{\theta} c_{\psi}+c_{\phi} S_{\psi} & -S_{\phi} c_{\theta} S_{\psi}+c_{\phi} c_{\psi} & S_{\phi} S_{\theta} \\
-S_{\theta} c_{\psi} & S_{\theta} S_{\psi} & c_{\theta}
\end{array}\right]
\end{aligned}
$$

Parameterization of Rotations: Roll. Pitch and Yaw Angles

- A rotation matrix R could be represented as a product of three successive rotations about the fixed coordinates.
- These rotations define the three angles: roll, pitch, yaw, $\{\phi, \theta, \psi\}$:
(1) Rotation by ϕ about the x_{0}-axis,
(2) Followed by rotation by θ about the fixed y_{0}-axis.
(3) then followed by ψ about the fixed z_{0}-axis.

Parameterization of Rotations: Roll. Pitch and Yaw Angles

- A rotation matrix R could be represented as a product of three successive rotations about the fixed coordinates.
- These rotations define the three angles: roll, pitch, yaw, $\{\phi, \theta, \psi\}$:
(1) Rotation by ϕ about the x_{0}-axis,
(2) Followed by rotation by θ about the fixed y_{0}-axis.
(3) then followed by ψ about the fixed z_{0}-axis.

$$
\begin{aligned}
R_{X X Z} & =R_{z, \phi} R_{y, \theta} R_{x, \psi} \\
& =\left[\begin{array}{ccc}
c_{\phi} & -s_{\phi} & 0 \\
s_{\phi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\psi} & -s_{\psi} \\
0 & s_{\psi} & c_{\psi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -s_{\phi} c_{\psi}+c_{\phi} s_{\theta} s_{\psi} & s_{\phi} s_{\psi}+c_{\phi} s_{\theta} c_{\psi} \\
s_{\phi} c_{\theta} & c_{\phi} c_{\psi}+s_{\phi} s_{\theta} s_{\psi} & -c_{\phi} s_{\psi}+s_{\phi} s_{\theta} c_{\psi} \\
-s_{\theta} & c_{\theta} s_{\psi} & c_{\theta} c_{\psi}
\end{array}\right]
\end{aligned}
$$

Questions?

haitham.elhussieny@feng.bu.edu.eg

